Translate Bio Presents Preclinical Results in Primary Ciliary Dyskinesia (PCD) at American Thoracic Society (ATS) 2021 International Conference
– Positive results suggest potential for an mRNA-based therapeutic to correct ciliary function in patients with PCD due to DNAI1 mutations –
– Company expects to advance a lead PCD candidate into IND-enabling studies in 2H 2021 –
PCD is an autosomal recessive disease caused by a genetic mutation that leads to dysfunction of the cilia, which prevents proper mucociliary clearance from the lungs. PCD causes chronic inflammation and pulmonary infection risks which can lead to irreversible lung damage (bronchiectasis) in adulthood including severe impact on quality of life, potential for respiratory failure and, in some cases, the need for lung transplantation. There is no cure for PCD. Disease management is focused on relieving symptoms and slowing the progression of lung damage. While PCD can result from a mutation in one or more of 30+ genes involved in ciliary function, DNAI1 is one of the more frequently mutated genes, accounting for approximately 5–10 percent of diagnosed PCD cases.
- Multiple iterations of codon optimization resulted in the selection of an mRNA sequence that had further improved protein expression by 30%;
- DNAI1 mRNA packaged in proprietary LNPs and delivered by an intratracheal or nebulized route of administration resulted in DNAI1 expression in multiciliated airway epithelial cells in vivo;
- In vivo, DNAI1 expression colocalized with a known ciliary protein along the length of the cilia, as required for restoration of function; and
- Repeat administration showed an increased number of DNAI1-expresssing cells and suggested a steady state of cilia restoration can be achieved.
“With no currently approved therapeutics to treat the underlying cause of PCD, our goal is to provide inhaled delivery of a potent mRNA-based treatment that will restore mucociliary clearance and prevent progressive lung pathology,” said
About
Forward-Looking Statements
This press release contains forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Such forward-looking statements include, but are not limited to, those regarding: the potential for an mRNA-based therapeutic to restore mucociliary clearance and correct cilia function in patients; the anticipated advancement of a lead PCD candidate into IND-enabling studies in 2H 2021; the goal to provide inhaled delivery of a potent mRNA-based treatment to restore mucociliary clearance and prevent progressive lung pathology; Translate Bio’s beliefs regarding the broad applicability of its MRT platform; and Translate Bio’s plans, strategies and prospects for its business. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “forward,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “target,” “would” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Such statements are subject to numerous important factors, risks and uncertainties that may cause actual events or results to differ materially from current expectations and beliefs, including but not limited to: the current and potential future impacts of the COVID-19 pandemic on Translate Bio’s business, financial condition, operations and liquidity; Translate Bio’s ability to advance the development of its platform and programs, including without limitation, under the timelines it projects, demonstrate the requisite safety and efficacy of its product candidates and replicate in clinical trials any positive findings from preclinical studies; the successful advancement of the collaboration agreement between
Investors | Media |
tdahlman@translate.bio | mgavaghan@translate.bio |
Source: Translate Bio, Inc.